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Abstract 

 
 This paper discusses the continuation of research 
into the development of new motion cueing algorithms 
first reported in 1999.  In this earlier work, two viable 
approaches to motion cueing were identified: the 
coordinated adaptive washout algorithm or “adaptive 
algorithm”, and the “optimal algorithm”.  In this study, 
a novel approach to motion cueing is discussed that 
would combine features of both algorithms.    

 
 The new algorithm is formulated as a linear 
optimal control problem, incorporating improved 
vestibular models and an integrated visual-vestibular 
motion perception model previously reported.  A 
control law is generated from the motion platform 
states, resulting in a set of nonlinear cueing filters.  The 
time-varying control law requires the matrix Riccati 
equation to be solved in real time.  Therefore, in order 
to meet the real time requirement, a neurocomputing 
approach is used to solve this computationally 
challenging problem.      
   
 Single degree-of-freedom responses for the 
nonlinear algorithm were generated and compared to 
the adaptive and optimal algorithms.   Results for the 
heave mode show the nonlinear algorithm producing a 
motion cue with a time-varying washout, sustaining 
small cues for a longer duration and washing out larger 
cues more quickly.  The addition of the optokinetic 
influence from the integrated perception model was 
shown to improve the response to a surge input, 
producing a specific force response with no steady-state 
washout.  Improved cues are also observed for 

responses to a sway input.  Yaw mode responses reveal 
that the nonlinear algorithm improves the motion cues 
by reducing the magnitude of negative cues.     

                                                           
* PhD. Candidate, Department of Mechanical 
Engineering, Student Member AIAA 
† Associate Professor, Department of Mechanical 
Engineering, Associate Fellow AIAA 
‡ Systems Development Branch, Associate Fellow 
AIAA 
 
 

 
 The effectiveness of the nonlinear algorithm as 
compared to the adaptive and linear optimal algorithms 
will be evaluated on a motion platform, the NASA 
Langley Research Center Visual Motion Simulator 
(VMS), and ultimately the Cockpit Motion Facility 
(CMF) with a series of pilot controlled maneuvers.  A 
proposed experimental procedure is discussed.  The 
results of this evaluation will be used to assess motion 
cueing performance. 
 

Introduction 
 
 It was reported in 19991 that two viable approaches 
to motion cueing were identified.  The first technique is 
a modification of the coordinated washout algorithm 
developed at NASA by Parrish, et al.2, hereafter 
referred to as the “adaptive algorithm”.  This algorithm 
uses both first-and second-order linear washout filters 
in conjunction with an optimization method that adjusts 
the filter gains in real time by minimizing the error 
between the simulated aircraft and the motion platform 
responses.  This methodology effectively produces a set 
of nonlinear washout filters. 
 
 The second method is the “optimal algorithm” 
based on that first developed by Sivan, et al.3, and later 
implemented by Reid and Nahon.4  This algorithm uses 
higher-order filters that are determined, prior to real 
time application, using optimal control methods.  This 
method incorporates a model of the human vestibular 
system, constraining the sensation error between the 
simulated aircraft and motion platform dynamics.  The 
authors1 initially formulated a version of this approach 
that resulted in improved motion cues, but was less 
capable of tracking changes to aircraft inputs as 
compared to the former approach.  Therefore, a new 
algorithm is desired that combines features of both the 
optimal and adaptive algorithms. 
 
 The proposed algorithm is formulated as a linear 
optimal control problem similar to the approach 
previously reported1, but can also be solved in real 
time.  Furthermore, it incorporates models of the human 
vestibular sensation system, with improved semicircular 
canals and otoliths models, along with an integrated 
visual-vestibular perception model.  A nonlinear control 
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law is implemented to generate a scalar coefficient α 
that is a function of the motion platform states.  For 
large platform motions, the coefficient α is large, 
resulting in faster control action.  The matrix Riccati 
equation is then solved in real time as a function of α, 
resulting in the feedback matrix needed to compute the 
desired motion cues.  In order to meet the real time 
requirement, a neurocomputing approach has been 
chosen to solve this computationally challenging 
problem.  The structure of the problem is illustrated in 
Figure 1. 

 
Figure 1.  Problem Structure of Nonlinear Cueing 
Algorithm. 
  

Algorithm Development 
 
 The algorithm is implemented in four modes: two 
single-degree-of-freedom modes (yaw and heave), and 
two two-degree-of-freedom modes (pitch/surge and 
roll/sway).  The algorithm development for the 
longitudinal mode is given below.  The control input u 
is formulated as 
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where  is angular velocity, and aθ� x is the translational 
acceleration, with each term respectively set equal to u1 
and u2. 
 
 The rotational perception qPE is then related to the 
input u by 
 

                              (2)        
,PEq

= +

= +
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   It is also necessary for the control algorithm to 
explicitly access motion states such as linear velocity 
and displacement of the motion platform that appear in 
the cost function.  For this purpose, additional terms are 
included in the state equations: 

 
where x1~3 are the rotational perception states, and ASCC, 
BSCC, CSCC, and DSCC represent in state space form the 

semicircular canals model along with an additional state 
that represents the optokinetic influence from the 
interaction of visual and vestibular stimuli as presented 
in the integrated motion perception model.5 
 
 The translational perceived velocity vxPE is then 
related to the input u by 
 

                 (3) 
,xPEv

= +

= +
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x A x B

C x D u
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where x4~9 are the translational perception states, and 
AOTO, BOTO, COTO, and DOTO includes a proposed otolith 
model,6 along with an additional state representing the 
optokinetic influence. 
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 The representations in Eqs. (2) and (3) can be 
combined to form a single representation for the human 
perception model: 
 

  1~ 9 V 1~ 9 V

PE V 1~ 9 V

x = A x + B u

y = C x + D u ,

�
               (4) 

 
where x1~9 and yPE are, respectively, the combined states 
and perceived responses, and AV, BV, CV, and DV  
represent the perceptual models as one set of state 
equations: 
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 It is assumed that the same perceptual model can 
be applied to both the pilot in the aircraft and the pilot 
in the simulator as shown in Figure 1.  We define the 
pilot perceptual error e, resulting in 
 

                (5) 
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= + −
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where uS and uA represent the simulator and aircraft 
inputs as given in Eqn. (1). 
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where xd represents the additional motion platform 
states: 
 

  3 2 ,x x xa dt a dt a dt θ=   ∫∫∫ ∫∫ ∫
T

dx

 
and are related to the simulator input uS by  
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The aircraft input uA consists of filtered white noise, 
and can be expressed as 
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where xn are the filtered white noise states, w represents 
white noise, with An and Bn given as 
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where ω1 and ω2 are the first-order filter break 
frequencies for each degree-of-freedom. 
  
 The state equations given in Eqns. (5), (6), and (7) 
can be combined to form the desired system equation 
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where y is the desired output, and x x  
represents the combined states.  The combined system 
matrices A, B, C, D, and H are then given by 
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A cost function J is then defined as 
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where E{ } is the mathematical mean of statistical 
variable, Q and Rd are positive semi-definite matrices, 
and R is a positive definite matrix.   Eqn. (9) implies 
that three variables are to be constrained in the cost 
function: the sensation error e along with the additional 
terms xd and uS which together define the linear and 
angular motion of the platform.  The cost function 
constrains both the sensation error and the platform 
motion. 
 
 The system equation and cost function can be 
transformed to the standard optimal control form as 
shown in Kwakernaak and Sivan7 and noted in Reid 
and Nahon4 by the following equations: 
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The cost function in Eq. (10) is augmented with an 
additional term  proposed by Anderson and 
Moore:

2 te α

8 
 

             (11) ({ }1

0

2 ,
t t

t
J E e dtα′ ′ ′= +∫ T T
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where  is positive definite,  is positive semi-
definite, and the scalar coefficient α represents a 
minimum degree of stability in the closed-loop system 
where α > 0. 

′
1R 2R
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 Anderson and Moore8 show that the system 
equation and cost function can be transformed to 
eliminate the exponential term, resulting in 
 

              (12) 
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 We now wish to compute the simulator control 
input uS that minimizes the cost function given in Eqn. 
(12).  Anderson and Moore8 note that for this problem, 

 is positive definite, ( )  is 

controllable and (  is observable.  Under 
these conditions, the cost function is minimized when 

α′ +A ,α′ +A I B
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The feedback matrix K(α) is partitioned corresponding 
to the partition of x in Eq. (8): 
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Noting that xn = uA, remove the states corresponding to 
the xn partition from Eqn. (13): 
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and substituting Eq. (15) into Eq. (16) results in 
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 A nonlinear control law is chosen to make α 
dependent upon the system states: 
 
  α =               (18) T

d 2 dx Q x
 
where Q2 is a weighting matrix that is at least positive 
semi-definite.  As the system states increase in 
magnitude, i.e. with large platform motions, then α 
increases, resulting in faster control action and 
increased system stability.  For small responses there 
will be limited control action.  The feedback matrix 
K(α) is then determined by solving the Riccati equation 
of Eq. (14) in real time as a function of  α. 
 

Real Time Solution of the Riccati Equation 
 
 Solving the nonlinear Riccati equation in Eqn. (14) 
is a computational challenge in real time as a new 
solution is required at each time step.  Since the 
solution to the preceding time step is available, it is 
advantageous to use this as an initial solution when 
computing the solution for the current time step, thus 
reducing the computational burden.  The initial Riccati 
equation solution to the linear optimal algorithm that is 
computed off-line in MATLAB is available and can be 
used as the initial solution for the first time step.  To 
this end we desire a technique that assumes the initial 
solution is “close” to the computational solution at a 
given time step. 
 
 Two types of techniques were investigated for 
implementation with the nonlinear algorithm.  
Blackburn9 developed a method of solution by using a 
Newton-Raphson iteration.  With this technique, 
computation of the Jacobian matrix as a Kronecker 
product is required along with matrix inversion, which 
can result in a singular solution for an ill-conditioned 
system.  Neurocomputing approaches suggested by 
Wang and Wu10 and Ham and Collins11 eliminate these 
operations, taking advantage of the matrix structure 
associated with the algorithm, and thus reducing the 
computational burden.  For these reasons, the 
neurocomputing approaches were further evaluated.   
 
 The neurocomputing approach proposed by Ham 
and Collins11 uses a structured neural network for 
obtaining the Riccati equation computational solution P 
as shown in Figure 2. 
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Figure 2.  Structured Neural Network for Solving the 
Riccati Equation. 
 
The error signal v(t) in Figure 2 is given as 
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where , , and z(t) is an 
excitatory input signal.  An energy function is then 
formulated as 
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= vE P  (where i 2 is the 
Euclidean norm), which is minimized using the method 
of steepest descent, resulting in a system of first-order 
matrix differential equations 
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where µ > 0 is the learning rate parameter, and 

as shown in Figure 2.  In discrete-
time form (the time step ∆t is absorbed into the learning 
rate µ), the learning rule for each training step k 
becomes 
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with the update term  given as ( )k∆P
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 Ham and Collins11 report that even though the 
update term is not symmetric, the learning rule will still 
converge to the positive definite, symmetric solution.  
They note, however, that performing an additional 
computation resulting in a symmetric update term will 
improve convergence: 
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 Ham and Collins11 note that the external excitatory 
vector input signals z(t) are a set of linearly 
independent bi-polar vectors given as 
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where each vector )  is presented once to the neural 
network in an iteration, i.e. for one iteration there is a 
total of n presentations of the training step given in 
Eqn. (22), with the solution P(k) updated with each 
training step. 

( kz

 
Algorithm Evaluation 

 
 Comparisons of single degree-of-freedom 
responses for the nonlinear algorithm are made with the 
linear optimal algorithm and the adaptive algorithm.  
Comparisons are made of both specific force cues at the 
pilot’s head and angular velocity cues, as well as the 
linear and angular displacement of the simulator. 
 
 Wu12 developed an algorithm that scales the 
aircraft inputs by a third-order polynomial, maximizing 
the available motion cues while remaining within the 
operational limits of the motion system.  In order to 
determine the polynomial gain coefficients for each 
degree-of-freedom that result in the most desired pilot 
performance, a series of pilot controlled maneuvers 
were executed with the adaptive and linear optimal 
algorithms on the NASA Langley Visual Motion 
Simulator (VMS).  A series of maneuvers were first 
executed for each algorithm with the nonlinear gain 
coefficients determined prior to testing.  Individual gain 
coefficients for each degree-of-freedom were then 
adjusted until the desired pilot perception and 
performance were reached, while ensuring that the 
simulator motion platform limits were not exceeded.  
Using these results, coefficients for the nonlinear 
algorithm were then tuned separately to produce the 
desired performance within the motion platform limits. 
 
 For the heave mode, the off-line solution of the 
Riccati equation initially produced one closed-loop 
eigenvalue of zero, which resulted in the linear optimal 
control weights being very difficult to tune.  This 
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eigenvalue was a result of the inclusion of the 
optokinetic channel in the algorithm formulation; the 
formulation based on the vestibular model alone did not 
produce a zero eigenvalue.  A state reduction using the 
MATLAB function “minreal” was performed on the 
perceptual model, removing one state and in turn 
eliminating the closed-loop eigenvalue of zero.  The 
linear optimal control weights could then be tuned to 
produce the desired specific force cue; matrices Q and 
Rd were increased to produce the desired onset ramp 
and magnitude while the filtered white noise break 
frequency ω was increased to 20π rad/s to eliminate 
false cues.  The heave mode responses for a pulse input 
of 1 m/s2 magnitude and 10-second duration are shown 
in Figure 3.   
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Figure 3.  Algorithm Responses to Heave Pulse Input 
of 1 m/s2, 10-Second Duration. 
 
 A learning rate parameter µ = 2 × 10-6 is used in 
computing the real-time solution of the Riccati 
equation.  The onset ramp is very close to that of the 
adaptive and optimal algorithms, with a slightly larger 
peak magnitude.  The cue is sustained for a longer 
duration, resulting in 62 percent more z-axis 
displacement as compared to the linear optimal 
algorithm.  The negative cue at the end of the pulse is 
twice the magnitude as the adaptive algorithm response. 
 
   Figure 4 compares responses with the pulse 
magnitude increased to 3 m/s2.  The nonlinear 
algorithm response washes out faster due to the 
nonlinear effects generated from the Riccati equation 
solution.  A larger z-axis displacement still results, but 
reduced to 25 percent greater than the linear optimal 
algorithm.  The negative cue at the end of the pulse is 
slightly smaller than the optimal algorithm response, 

but is much larger than the negative cue that results 
from the adaptive algorithm.  
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Figure 4.  Algorithm Responses to Heave Pulse Input 
of 3 m/s2, 10-Second Duration. 
 
 For the two-degree-of-freedom longitudinal mode, 
the initial formulation with the integrated perception 
model resulted in a higher-order system (15th-order) 
that is much larger than either heave or yaw (5th-order).  
Two closed-loop eigenvalues of zero resulted from the 
off-line solution of the Riccati equation.  The first 
originated from the additional simulator state θ.  The 
second resulted from the optokinetic channel for the 
translational degree-of-freedom.  Removal of the 
additional platform state combined with a state 
reduction of the perceptual model eliminates the two 
closed-loop eigenvalues of zero, reducing the system to 
11th-order. 
 
 Figure 5 compares the algorithm responses to an 
aircraft surge ramp to step input.  A learning rate 
parameter µ = 2 × 10-6 is used in computing the real-
time solution of the Riccati equation.   Note that the 
specific force response for the nonlinear algorithm 
increases to a larger magnitude after onset and does not 
wash out as a function of time, resulting from the 
steady-state tilt angle sustaining a constant magnitude.  
A small increase in the angular velocity (tilt) rate is also 
observed. 
 
 Figure 6 compares the responses for this surge cue 
from the integrated perception model.  The sensed 
specific force responses show the nonlinear algorithm 
closely tracks the shape of the sensed response from the 
aircraft.  
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Figure 6.  Integrated Perception Model Responses to 
Surge Cues of Figure 5. 
 
 The optimal algorithm produces about the same 
onset as the nonlinear algorithm, but results in 
noticeably less sensed response, especially for the first 
few seconds after the peak magnitude is reached.  The 
perceived velocity responses show larger magnitudes 
for the nonlinear algorithm, increasing to 15 percent 
greater magnitude after 10 seconds.  The adaptive 
algorithm shows a negative, or false specific force cue 
sensed at the onset that results in a subsequent lag and a 
reduction in the perceived velocity for several seconds. 
 
 Figure 7 compares the algorithm responses to an 
aircraft sway half sine input.  As with the longitudinal 
mode, a state reduction was performed on the integrated 
perceptual model to eliminate one zero eigenvalue, and 
the additional simulator state φ was removed from the 

algorithm formulation.  A learning rate parameter µ = 2 
× 10-6 was again used. 
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Figure 7.  Algorithm Responses to Sway Half Sine 
Input of 3 m/s2, 5-Second Duration.  
 
 Note that the specific force cue generated by the 
adaptive algorithm has some significant distortion.  A 
false cue is generated at onset, resulting in a noticeable 
lag in the motion cue response.  A large peak 
magnitude is reached, but nearly one second after the 
aircraft input reached its peak.  A large residual specific 
force cue remains for about three seconds after the 
aircraft input ends.  The response generated by the 
linear optimal algorithm shows no negative cue at the 
onset, a well-shaped half sine response with a less 
noticeable lag, and much less residual specific force 
cue.  The nonlinear algorithm results in a peak specific 
force cue that is 15 percent larger than the linear 
optimal algorithm, with even less lag and almost no 
residual specific force cue after the half sine input ends. 
 
 Figure 8 compares the responses for these sway 
cues from the integrated perception model.  As 
expected, the nonlinear algorithm peaks to a larger 
sensed specific force as compared to the optimal 
algorithm, resulting in a larger perceived velocity.  
After five seconds the conflict between the vestibular 
and visual stimuli is reduced, resulting in a gradual 
acceptance of the visual cues governed by the 
optokinetic influence in the model.  The problems noted 
with the adaptive algorithm are evident; the false cue 
and delayed peak are noticeable along with excessive 
sensed and perceived responses observed in the last two 
seconds of the pulse input.  In all three algorithms, the 
magnitude of the vestibular cues eliminates the latency 
to onset of linearvection that would occur with visual 
stimuli alone. 
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Figure 8.  Integrated Perception Model Responses to 
Sway Cues of Figure 5.   
 
 The yaw mode responses for an angular 
acceleration doublet of 0.1 rad/s2 magnitude and 5-
second duration are shown in Figure 9.  A learning rate 
µ = 2 × 10-6 is used in computing the real-time solution 
of the Riccati equation.  Note that the angular velocity 
cue near the end of the aircraft input is reduced for the 
nonlinear algorithm.  The yaw angle displacement 
command returns to the neutral state (zero 
displacement) in less than twenty seconds, while the 
linear optimal algorithm requires more time to return to 
the neutral state. 
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Figure 9.  Algorithm Responses to Yaw Doublet of 0.1 
rad/s2 and 5-Second Duration. 
 
 Due to the tilt coordination limit that is needed for 
responses to surge and sway inputs, separate modes are 
needed respectively for both pitch and roll cues.  For 
both pitch and roll inputs the linear filter frequency 

characteristics are very close to a unity-gain filter.  No 
additional benefit resulted from solving the Riccati 
equation in real time.  For these reasons, the 
formulations shown in Eqns. (1) through (23) are 
replaced by unity-gain filters for both pitch and roll 
modes. 
 
 Figure 10 shows the roll responses for an angular 
acceleration doublet of 0.1 rad/s2 magnitude and 5-
second duration.  Note that the specific force response 
for the nonlinear algorithm is larger in magnitude (and 
closer to the aircraft response) as compared to the 
optimal and adaptive algorithm responses.  Pitch 
responses for the nonlinear algorithm are similar to 
those previously reported in 1999.1 
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Figure 10.  Algorithm Responses to Roll Doublet of 
0.1 rad/s2 and 5-Second Duration. 
 
 The systems of first-order differential equations 
given for the neurocomputing solver in Eqn. (22) 
require a numerical integration algorithm.  A series of 
algorithms (Euler, 2nd-order Adams-Bashforth, 2nd- and 
4th-order Runge-Kutta) were evaluated.  No 
improvement was noticed with the higher-order 
methods as compared to the Euler method.  However, 
for the system state equations in Eqn. (17), the Euler 
method was found unstable for small sampling 
frequencies; the 2nd-order Runge-Kutta method resulted 
in stable results for sample rates as small as 32 Hz. 
 
 The responses using a second neurocomputing 
solver proposed by Wang and Wu10 are sensitive to the 
magnitude and stiffness of the closed-loop eigenvalues, 
with the responses dependent upon the choice and 
structure of the activation functions.  The approach 
proposed by Ham and Collins11 utilizes a structured 
network without activation functions; the responses are 
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more robust with respect to the closed-loop 
eigenvalues.  This solver yields improved responses and 
convergence with less computational burden; only one 
solver iteration is required per time step. 
 

Piloted Performance Testing 
 
 The effectiveness of the nonlinear algorithm as 
compared to the adaptive and optimal algorithms will 
be assessed in piloted simulations.  Testing will be 
conducted on the NASA Langley Research Center 
Visual Motion Simulator (VMS), and ultimately on a 
new motion system, the Cockpit Motion Facility 
(CMF).1 Preliminary testing has been conducted on the 
VMS with the adaptive and optimal algorithms.  As a 
result of these preliminary tests the polynomial scaling 
coefficients were adjusted for each degree-of-freedom.  
Similar testing to adjust the polynomial scaling 
coefficients will be performed for the nonlinear 
algorithm.   
 
 A group of four pilots will execute a series of 
maneuvers on the simulator.  For each maneuver the 
simulated aircraft dynamics is generated from manual 
pilot control.  The pilot control inputs (throttle, 
elevator, aileron, and rudder) will be sampled for each 
maneuver.  Accelerometer measurements for specific 
force and angular acceleration at the platform motion-
base centroid in six degrees-of-freedom will be 
recorded for each maneuver. 
   
 Pilot perception, as computed from the vestibular 
and integrated perception models, will be recorded for 
each maneuver.  From the pilot control inputs, power 
spectral density, crossover frequency, and phase margin 
will be analyzed to determine the effect of motion 
platform response upon pilot performance, comparing 
results for the various algorithms.  The pilot will also 
evaluate each maneuver separately using the Cooper-
Harper rating scale.  Work is currently in progress to 
develop a performance metric that will utilize these data 
and benchmark the fidelity of each algorithm in 
replicating pilot performance and workload of actual 
aircraft maneuvers. 
 

Conclusions 
 
 A nonlinear motion cueing algorithm was 
developed that combines features of the adaptive and 
optimal algorithms, and incorporates the vestibular and 
integrated perception models.  A nonlinear control law 
was proposed that requires the solution of the Riccati 
equation in real time.  The neurocomputing approach 
implemented for this task yields responses that are 

robust with respect to the closed-loop eigenvalues, with 
less computational burden as compared to a second 
neurocomputing solver.   
 
 Results for the heave mode show the nonlinear 
algorithm producing a motion cue with a time-varying 
washout, sustaining small cues for a longer duration 
and washing out larger cues more quickly.  The 
addition of the optokinetic influence from the integrated 
perception model was shown to improve the response to 
a surge input, producing a specific force response with 
no steady-state washout.  Improved cues are also 
observed for responses to a sway input.  Yaw mode 
responses reveal that the nonlinear algorithm improves 
the motion cues by reducing the magnitude of negative 
cues. 
 
 The nonlinear algorithm will first be implemented 
on the Langley Visual Motion Simulator, and then on 
the Cockpit Motion Facility.  As was recently done with 
the adaptive and optimal algorithms, the polynomial 
scaling coefficients will be tuned to produce the most 
desired pilot performance.     From piloted simulations, 
a metric will be derived that will demonstrate the 
effectiveness of the new algorithm in simulating aircraft 
pilot performance. 
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